距離空間が位相空間であるとは
ハウスドルフ空間でなければ三角不等式が成立しないことを示す
ε=1/2d(x,y)とすると
z∈N(x)∩N(y)
d(x,z),d(y,z)<ε
d(x,z)+d(y,z)<2ε=d(x,y)となりzが交叉しているので三角不等式に反するため
距離空間ではない、つまり位相空間ではないが成立する